The design equations of LLC-SRC were listed as:

$$\begin{cases} n = \frac{V_{in-nor}}{2V_{o-nor}} \\ C_s = \frac{I_o}{4nf_{\min}(V_{c-\max} - nV_{o-nor})} \\ L_s = \frac{1}{4\pi^2 f_o^2 C_s} \\ L_m = \frac{\pi^2}{4} \frac{f_o/f_{\min} - 1}{1 - V_{in-\min}/(2nV_{o-\max})} \\ f_{max} = \frac{f_o}{\sqrt{1 + \frac{L_m}{L_s} \left(1 - \frac{V_{in-\max}}{2nV_{o-\min}}\right)}} \\ I_{p,RMS} = \frac{\sqrt{2}}{4} \sqrt{\left(\frac{\pi I_o}{n}\right)^2 + \left(\frac{nV_o}{2L_m f_o}\right)^2} \end{cases}$$

Wherein:

V_{in-nor}, V_{in-min}, V_{in-max} are normal, minimums and maximum input voltage.

 V_{o-nor} , V_{o-min} , V_{o-max} are normal, minimums and maximum output voltage.

*I*_o is rated output voltage.

 f_o is the switching frequency at normal condition which is given by designer.

 f_{min} is minimums switching frequency which is given by designer.

 V_{c-max} is maximum allowed voltage across resonant capacitor C_s .

n is transformer turn ratio of primary turns to secondary turns

 C_s is resonant capacitor

 L_s is resonant inductance

L_m is magnetizing inductance

 f_{max} is maximum switching frequency.

 $I_{p,RMS}$ is RMS value of primary resonant current